- The "criss-cross" method discussed earlier can only be used on 2x2 and 3x3 determinants
- A general method for calculating determinants known as the Method of Cofactors is completely general and can be used to evaluate a determinant of any order (2x2, 3x3, 4x4, 5x5,...)
- Element - each individual entry or number in a determinant is referred to as an element. We often use the notation aij to designate the element in the "ith" row and "jth" column.
a11 | a12 | a13 |
a21 | a22 | a23 |
a31 | a32 | a33 |
a21 --> means element in second row, and first column.
- Minor - the minor of an element is the determinant that is left when the row and column containing the element are crossed out.
The minor of
a13 =
a21 | a22 |
a31 | a32 |
The minor of
a22 =
a11 | a13 |
a31 | a33 |
The minor of
a23 =
a11 | a12 |
a31 | a32 |
in total there would be 9 minors for 3x3 determinant
- Cofactor - The cofactor of an element is equal to the minor of the element multiplied by +1 or -1, depending on the elements position. In general,
Cofactor of aij = (-1)i+j . (minor of aij)
Rather than using the fancy formula above to generate the appropriate (+1) or (-1) we will oftenuse the checker board pattern of signs shown below:
always "+" in top left corner
+ | - | + |
- | + | - |
+ | - | + |
example:
Given
a11 | a12 | a13 |
a21 | a22 | a23 |
a31 | a32 | a33 |
==>
+ a11 | - a12 | + a13 |
- a21 | + a22 | - a23 |
+ a31 | - a32 | + a33 |
Cofactor of
a13 = (+1) . minor of a13
a13 = (+1) .
a21 | a22 |
a31 | a32 |
Cofactor of
a33 = (+1) . minor of a33
a33 = (+1) .
a11 | a12 |
a21 | a22 |
Cofactor of
a32 = (-1) . minor of a32
a32 = (-1) .
a11 | a13 |
a21 | a23 |
example:
Given
4 | -2 | 6 |
-4 | ||
8 | 5 |
==>
+ 4 | - -2 | + 6 |
-4 | ||
8 | 5 |
Cofactor of 8
a31 = (+1) . minor of a31
a31 = (+1) .
-2 | 6 |
1 |
Cofactor of 5
a32 = (-1) . minor of a32
a32 = (-1) .
4 | 6 |
-4 | 1 |
Cofactor of -4
a21 = (-1) . minor of a21
a21 = (-1) .
-2 | 6 |
5 | 2 |
General Rule for evaluating a determinant (method of Cofactors)
Pick any row or any column of the determinant and multiply each element in the row or column by its corresponding cofactor and then sum up these products. The result obtained is the value of the determinant!!
Example:
Evaluate the determinant below using the method of cofactors.
∆ =
4 | 3 | 2 |
6 | ||
1 | -4 |
Solution:
Expanding using cofactor method with 1st row
∆ =
+ 4 | - 3 | + 2 |
6 | ||
1 | -4 |
∆ = 4 (+1) .
-2 | 5 |
-4 | -8 |
6 | 5 |
1 | -8 |
6 | -2 |
1 | -4 |
∆ = 4 (16 - (-20)) - 3 (-48 - 5) + 2 (-24 - (-2))
∆ = 4 (36) - 3 (-53) + 2 (-22)
∆ = 259
Note:
Redo same ∆ calculation using 1st column
∆ =
+ 4 | 3 | 2 |
- 6 | ||
+ 1 | -4 |
∆ = 4 (+1) .
-2 | 5 |
-4 | -8 |
3 | 2 |
-4 | -8 |
3 | 2 |
-2 | 5 |
∆ = 4 (16 - (-20)) - 6 (-24 - (-81)) + 1 (15 - (-4))
∆ = 4 (36) - 3 (-53) + 2 (-22)
∆ = 259
ie. same answer.
Example:
Evaluate the 4x4 determinant shown using the method of cofactors. Which row(s) or column(s) would be most convenient to use?
∆ =
0 | 5 | 0 0 |
2 | 4 4 | |
0 0 | 3 8 | 2 0 1 1 |
Solution:
Expanding using cofactor method with 1st column
∆ =
+ 0 | 5 | 0 0 |
- 2 | 4 4 | |
+ 0 - 0 | 3 8 | 2 0 1 1 |
∆ = 0 (+1) .
1 | 4 | 4 |
3 | 2 | |
8 | 1 |
+ 2 (-1) .
5 | 0 | 0 |
3 | 2 | |
8 | 1 |
+ 0 (-1) .
5 | 0 | 0 |
1 | 4 | 4 |
3 | 2 | 0 |
∆ = - 2 .
5 | 0 | 0 |
3 | 2 | |
8 | 1 |
Always "+" in top left position
∆ = -2 [ 0. (+1) .
3 | 2 |
8 | 1 |
+ 0 (-1) .
5 | 0 |
5 | 1 |
+ 1 (+1) .
5 | 0 |
3 | 2 |
]
∆ = -2 . [0 + 0 + 1 (10 - 0)]
∆ = -20
Some Useful Simplification Rules for Determinants
Property 1:
- Pick any row of determinant. You may add / subtract any multiple of another row to the given row and the value of the determinant will remain the same. ---> useful for introducing zeros...
∆ =
-2 | 0 | 2 |
2 | 4 | 3 |
4 | -4 | 4 |
<--- row 3 + 2 . row 1
∆ =
-2 | 0 | 2 |
0 | 4 | 5 |
0 | -4 | 8 |
Note: brought in zeros... good stuff!
Example:
∆ =
1 | 2 | 3 4 |
5 | 7 8 | |
9 13 | 10 14 | 11 12 15 16 |
<--- row 4 - row 3
∆ =
1 | 2 | 3 4 |
4 | 4 4 | |
9 4 | 10 4 | 11 12 4 4 |
<--- row 4 - row 2
∆ =
1 | 2 | 3 4 |
4 | 4 4 | |
9 0 | 10 0 | 11 12 0 0 |
expanding using row 4...
\ ∆ = 0
Property 2:
- Interchanging two rows (or, in fact, two columns) of a determinant changes the sign of the determinant.
a | b |
c | d |
= a d - b c ;
∆1 =
c | d |
a | b |
= b c - a d = - (a d - b c) = -∆
Example:
∆ =
2 | 4 |
8 | 6 |
=
-1 .
8 | 6 |
2 | 4 |
Note: not very useful property
Property 3:
- If every element in a row (or column) has a common factor, then you can pull the common factor out in front and multiply it by the remaining determinant. ---> Useful for reducing arithmetic...
a | b |
c | d |
= a d - b c ;
∆1 =
ka | kb |
c | d |
= k a d - k b c = k (a d - b c) = k∆
Examples:
∆ =
200 | 400 | 600 |
1 | 7 | 9 |
-3 | 6 | 9 |
= 200 .
1 | 2 | 3 |
1 | 7 | 9 |
-3 | 6 | 9 |
∆ = (200) (3) .
1 | 2 | 1 |
1 | 7 | 3 |
-3 | 6 | 3 |
= (200) (3) (3) .
1 | 2 | 1 |
1 | 7 | 3 |
-1 | 2 | 1 |
= 1800 .
1 | 2 | 1 |
1 | 7 | 3 |
-1 | 2 | 1 |
Example:
Solve the following system by usind Cramer's Rule.
2 x + 3 y + z = 2
- x + 2 y + 3 z = -1
-3 x - 3 y + z = 0
Solution:
∆ =
2 | 3 | 1 | 2 | 3 |
-1 | 2 | -1 | 2 | |
-3 | -3 | -3 | -3 |
∆ = (2) (1) (1) + (3) (3) (-3) + (1) (-1) (-3)
- (1) (2) (-3) - (2) (3) (-3) - (3) (-1) (1)
\ ∆ = 7 <--- System Determinant
∆x =
2 | 3 | 1 | 2 | 3 |
-1 | 2 | -1 | 2 | |
0 | -3 | 0 | -3 |
∆x = (2) (2) (1) + (3) (3) (0) + (1) (-1) (-3)
- (1) (2) (0) - (2) (3) (-3) - (3) (-1) (1)
\ ∆x = 28
\ x = ∆x / ∆ = 28 / 7 = 4
\ x = 4
∆y =
2 | 2 | 1 | 2 | 2 |
-1 | -1 | -1 | -1 | |
-3 | 0 | -3 | 0 |
∆y = 2 (-1) .
-1 | 3 |
-3 | 1 |
+ 1 (-1) .
2 | 1 |
-3 | 1 |
+ 0 (-1) .
2 | 1 |
-1 | 3 |
∆y = -2 (-1 - (-9)) - 1 (2 - (-3)) + 0
\ ∆y = -21
\ y = ∆y / ∆ = -21 / 7 = -3
\ y = -3
∆z =
2 | 3 | 2 |
-1 | 2 | |
-3 | -3 | 0 |
∆z =
0 | 7 | 0 |
-1 | 2 | |
-3 | -3 | 0 |
∆z = 7 (-1) .
-1 | -1 |
-3 | 0 |
∆z = -7 (0 - 3) = 21
\ ∆z = 21
\ z = ∆z / ∆ = 21 / 7 = 3
\ z = 3
No comments:
Post a Comment