Given an nxn system of linear equations:
----------------------------
----------------------------
(ii) if system determinant ∆ = 0 and ∆1 ≠ 0 , ∆2 ≠ 0 , ...---> system is inconsistent; no solution
ex.
2 x + 3 y = 6
4 x + 6 y = 10
∆ =
2 | 3 |
4 | 6 |
∆ = 12 - 12 = 0
∆x =
6 | 3 |
10 | 0 |
∆x = 36 - 30 = 6 ≠ 0
∆y =
2 | 6 |
4 | 10 |
∆y = 20 - 24 = -4 ≠ 0
----------------------------
(iii) if system determinant ∆ = 0 and at least one of ∆1 = 0 , ∆2 = 0 , ... are also zero ---> system is redundant; infinite solutions
ex.
2 x + 3 y = 6
4 x + 6 y = 12
∆ =
2 | 3 |
4 | 6 |
∆ = 12 - 12 = 0
∆x =
6 | 3 |
12 | 6 |
∆x = 36 - 36 = 0
∆y =
2 | 6 |
4 | 12 |
∆y = 24 - 24 = 0
Note:
ex. what if say ∆ = 5, and ∆x = 2 and ∆y = 0
==> No problem!
x = ∆x / ∆ = 2 / 5 = 0.4
y = ∆y / ∆ = 0 / 5 = 0
No comments:
Post a Comment