Example:
2 x + 4 y + 6 z = 4
1 x + 5 y + 9 z = 2
2 x + 1 y + 3 z = 7
Solution:
in augmented matrix form as:
2 | 4 | 6 | 4 |
1 | 5 | 9 | 2 |
2 | 1 | 3 | 7 |
make a11 = 1
<--- (row 1) / 2
2 | 4 | 6 | 4 |
1 | 5 | 9 | 2 |
2 | 1 | 3 | 7 |
make a21 = 0 & a31 = 0
1 | 2 | 3 | 2 |
1 | 5 | 9 | 2 |
2 | 1 | 3 | 7 |
<--- (row 3) - 2 (row 1)
make a22 = 0
1 | 2 | 3 | 2 |
0 | 3 | 6 | 0 |
0 | -3 | -3 |
make a32 = 0
1 | 2 | 3 | 2 |
0 | 1 | 2 | 0 |
0 | -3 | -3 |
<--- (row 3) + 3 (row 2)
make a33 = 1
1 | 2 | 3 | 2 |
0 | 1 | 2 | 0 |
0 | 0 | 3 |
<--- (row 3) / 3
now in Gauss form
1 | 2 | 3 | 2 |
0 | 1 | 2 | 0 |
0 | 0 | 1 |
After Gauss Elimination we obtained...
1 x + 2 y + 3 z = 2
0 x + 1 y + 2 z = 0
0 x + 0 y + 1 z = 1
eliminate "z", make a13 = 0 and a23 = 0
1 x + 2 y + 3 z = 2 <--- (row 1) - 3 (row 3)
0 x + 1 y + 2 z = 0 <--- (row 2) - 2 (row 3)
0 x + 0 y + 1 z = 1
make a12 = 0
1 x + 2 y + 0 z = -1 <--- (row 1) - 2 (row 2)
0 x + 1 y + 0 z = -2
0 x + 0 y + 1 z = 1
Now in Gauss-Jordan Form
1 x + 0 y + 0 z = -3
0 x + 1 y + 0 z = -2
0 x + 0 y + 1 z = 1
--> 1 x = 3 --> x = 3
--> 1 y = -2 --> y = -2
--> 1 z = 1 --> z = 1
the solution is:
x = 3 , y = -2 , z = 1
Gauss Elimination Tibdets:
- Q? Can we use Gauss on a system like:
3 x + 8 y + 1 z = 10
4 x - 2 y = 5
Answer:
==> Yes!
==> Rearange / Standardize: ==>
1 x + 0 y + 3 z = 4
3 x + 8 y + 1 z = 10
4 x - 2 y + 0 z = 5
- Q? Can we use Gauss on a system like:
-3 x + 4 y - 26 + 2 y = 0
4 x - 2 y = 5
Answer:
==> Yes!
==> Simplify / Rearange: ==>
-1 x + 18 y = 2
-3 x + 6 y = 26
No comments:
Post a Comment