Pages

Monday, June 13, 2011

Solve Systems of Equations using Gauss-Jordan Elimination

Gauss-Jordan Refinement (or extension)...

Example:
2 x + 4 y + 6 z = 4
1 x + 5 y + 9 z = 2
2 x + 1 y + 3 z = 7

Solution:
in augmented matrix form as:

2
4
6
4
1
5
9
2
2
1
3
7




make a11 = 1
                                      <--- (row 1) / 2

2
4
6
4
1
5
9
2
2
1
3
7




make a21 = 0 & a31 = 0

1
2
3
2
1
5
9
2
2
1
3
7
<--- (row 2) - 1 (row 1)
<--- (row 3) - 2 (row 1)


make a22 = 0

1
2
3
2
0
3
6
0
0
-3
-3
3
<--- (row 2) / 3


make a32 = 0

1
2
3
2
0
1
2
0
0
-3
-3
3

 <--- (row 3) + 3 (row 2)


make a33 = 1

1
2
3
2
0
1
2
0
0
0
3
3

<--- (row 3) / 3



now in Gauss form

1
2
3
2
0
1
2
0
0
0
1
1




After Gauss Elimination we obtained...

1 x + 2 y + 3 z = 2
0 x + 1 y + 2 z = 0
0 x + 0 y + 1 z = 1

eliminate "z", make a13 = 0 and a23 = 0

1 x + 2 y + 3 z = 2  <--- (row 1) - 3 (row 3)
0 x + 1 y + 2 z = 0  <--- (row 2) - 2 (row 3)
0 x + 0 y + 1 z = 1



make a12 = 0 

1 x + 2 y + 0 z = -1  <--- (row 1) - 2 (row 2)
0 x + 1 y + 0 z = -2
0 x + 0 y + 1 z = 1


Now in Gauss-Jordan Form

1 x + 0 y + 0 z = -3
0 x + 1 y + 0 z = -2
0 x + 0 y + 1 z = 1

--> 1 x =  3 --> x = 3
--> 1 y = -2 --> y = -2
--> 1 z =  1 -->  z = 1
the solution is:
x = 3 , y = -2 , z = 1

Gauss Elimination Tibdets:
  • Q? Can we use Gauss on a system like:
1 x + 3 z = 4
3 x + 8 y + 1 z = 10
4 x  - 2 y = 5
Answer:
==> Yes!
==> Rearange / Standardize: ==>

1 x + 0 y + 3 z = 4
3 x + 8 y + 1 z = 10
4 x  - 2 y + 0 z = 5

  • Q? Can we use Gauss on a system like:
2 x - 3 x + 18 y - 2 = 0
-3 x + 4 y - 26 + 2 y = 0
4 x - 2 y = 5

Answer:
==> Yes!
==> Simplify / Rearange: ==>

-1 x + 18 y = 2
-3 x + 6 y = 26

No comments:

Post a Comment