Pages

Wednesday, June 15, 2011

Example 1 - Solving a 3x3 system of equations using determinants

Example:
Find I2 only, using Cramer's Rule.
I1 + I2 + I3 = 0
6 I1 = 8 + 10 I3
6 I1 - 2 I2 = 5

Solution:
Start by rearranging (standardizing) the three equations:
rearrange:
1 I1 + 1 I2 + 1  I3 = 0
6 I1 + 0 I2 - 10 I3 = 8
6 I1 -  2 I2  + 0 I3 = 5

Want to find I2 using Cramer's Rule...
I2 = ∆/ ∆

∆ =

1
1
1
1
1
6
0
-10
6
0
6
-2
0
6
-2



∆ = (1) (0) (0) + (1) (-10) (6) +(1) (6) (-3)
     - (1) (0) (6) - (1) (-10) (-2) - (1) (6) (0) 
.......
∆ = -92  <--- System determinant

2 =

1
0
1
1
0
6
8
-10
6
8
6
5
0
6
5



2 = (1) (8) (0) + (0) (-10) (6) +(1) (6) (5)
     - (1) (8) (6) - (1) (-10) (5) - (0) (6) (0)
2 = 32

Finally: I2 =  ∆2 / ∆ = 32 / -92 = -8 / 23
I2  » -0.35

Note:
If desired you could find I1 & I3
1 =

0
1
1


8
0
-10


5
-2
0





1 = ... = -66

3 =

1
1
0
6
0
8
6
-2
5



3 = ... = 34


I1 = ∆1 / ∆ = -66 / -92 
I1 » 0.72

I3 = ∆3 / ∆ = 34 / -92 
I3 » -0.37

No comments:

Post a Comment