Find I2 only, using Cramer's Rule.
I1 + I2 + I3 = 0
6 I1 = 8 + 10 I3
6 I1 - 2 I2 = 5
Solution:
Start by rearranging (standardizing) the three equations:
rearrange:
1 I1 + 1 I2 + 1 I3 = 0
6 I1 + 0 I2 - 10 I3 = 8
6 I1 - 2 I2 + 0 I3 = 5
Want to find I2 using Cramer's Rule...
I2 = ∆2 / ∆
∆ =
1 | 1 | 1 | 1 | 1 |
6 | | | 6 | |
| | | | |
∆ = (1) (0) (0) + (1) (-10) (6) +(1) (6) (-3)
- (1) (0) (6) - (1) (-10) (-2) - (1) (6) (0)
.......
∆ = -92 <--- System determinant
∆2 =
1 | 0 | 1 | 1 | 0 |
6 | 6 | |||
∆2 = (1) (8) (0) + (0) (-10) (6) +(1) (6) (5)
- (1) (8) (6) - (1) (-10) (5) - (0) (6) (0)
∆2 = 32
Finally: I2 = ∆2 / ∆ = 32 / -92 = -8 / 23
I2 » -0.35
Note:
If desired you could find I1 & I3
∆1 =
0 | 1 | 1 | ||
8 | ||||
∆1 = ... = -66
∆3 =
1 | 1 | 0 | ||
6 | ||||
∆3 = ... = 34
\ I1 = ∆1 / ∆ = -66 / -92
I1 » 0.72\ I3 = ∆3 / ∆ = 34 / -92
I3 » -0.37
No comments:
Post a Comment