Example 3
Solve 3x3 system of equations by elimination methods
2 x + 4 y + 6 z = 4
1 x + 5 y + 9 z = 2
2 x + 1 y + 3 z = 7
Solution
Note:
3x3 system (eliminate a variable) --> 2x2 system (eliminate a variable) -->
1x1 system (solve for a variable) --> back substitution ...
2 x + 4 y + 6 z = 4 (1)
2.(1 x + 5 y + 9 z = 2) (2)
1.(2 x + 1 y + 3 z = 7) (3)
use equation (1) to eliminate x in (2) e (3)
(could have also chosen to eliminate y or z)
eqn. (1) - eqn. (2):
2 x + 4 y + 6 z = 4
-
2 x + 10 y + 18 z = 4
________________ ___
0 x - 6 y - 12 z = 0 (4)
eqn. (1) - eqn. (3):
2 x + 4 y + 6 z = 4
-
2 x + 1 y + 3 z = 7
______________ __
0 x + 3 y + 3 z = -3 (5)
-6 y - 12 z = 0 (4)
2.(3 y + 3 z = -3) (5)
Now eliminate y or z between eqns. (4) & (5)
eliminate y: eqn. (4) + 2 eqn. (5)
-6 y - 12 z = 0
+
6 y + 6 z = -6
________ __
0 y - 6 z = -6
\ z = 1
Back sub. to get y in eqn. (4) or eqn. (5).
(5): 3 y + 3 . 1 = -3 , (z = 1)
3 y = -6
\ y = -2
Now back sub. y = -2 and z = 1 in eqn. (1), (2) or (3).
(2): x + 5 (-2) + 9 (1) = 2
\ x = 3
\ solution is
[x, y, z]
[3 , -2 , 1]
NB: Satisfies equations 1-3
Check
No comments:
Post a Comment